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Abstract
The template-based approach has been essential for achieving high-quality models in the 
recent rounds of blind protein-protein docking competition CAPRI (Critical Assessment of 
Predicted Interactions). However, few such automated methods exist for protein-small molecule 
docking. In this paper, we present an algorithm for template-based docking of small molecules. 
It searches for known complexes with ligands that have partial coverage of the target ligand, 
performs conformational sampling and template-guided energy refinement to produce a variety 
of possible poses, and then scores the refined poses. The algorithm is available as the 
automated ClusPro LigTBM server. It allows the user to specify the target protein as a PDB file 
and the ligand as a SMILES string. The server then searches for templates and uses them for 
docking, presenting the user with top-scoring poses and their confidence scores. The method is 
tested on the Astex Diverse benchmark, as well as on the targets from the last round of the D3R 
(Drug Design Data Resource) Grand Challenge. The server is publicly available as part of the 
ClusPro docking server suite at https://ligtbm.cluspro.org/.
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Introduction
It is well known that the 3D structures of proteins are better conserved than their sequences, 
and hence modeling based on homology has been established as the method of choice to 
generate a reliable 3D model of a protein from its amino acid sequence [1]. The same template-
based approach has become increasingly important for predicting the structures of protein 
complexes [2,3], as demonstrated by the results of the CASP (Critical Assessment of Structure 
Prediction) and CAPRI (Critical Assessment of Predicted Interactions) community-wide 
experiments [4]. It was shown that such methods can produce higher quality models than 
traditional direct docking if good templates are available [5]. Based on this observation, we have 
recently added the option of template-based modeling to our protein-protein docking server 
ClusPro. 
In the present paper, we explore the use of the template-based approach for solving one of the 
most important problems in computational biophysics, the docking of small ligands to proteins, 
which has direct applications to drug discovery. Similar tools have been developed for the 
identification of ligand binding sites [6–8]. Some of these programs also perform ligand docking 
[9,10] and even high throughput screening [11]. While we cannot claim that the general 
approach we use is entirely novel, the specific algorithm we have developed performed 
extremely well in the last round of the D3R (Drug Design Data Resource) Grand Challenge 
(https://drugdesigndata.org/).
Grand Challenge 4 (GC4) was a blinded prediction contest for the computational chemistry 
community, and it included predicting the poses of 20 ligands binding to beta-secretase 1 
(BACE 1). Stages 1A and 1B of GC4 were, respectively, cross-docking and self-docking 
challenges. In both stages, our team submitted results [12] that were comparable to the 
excellent results produced by the groups of G. Wei [13], M. Totrov [14], and X. Zou. The fact 
that our method consistently was among these top performers motivated us to implement the 
algorithm as a server and make it available to the research community as part of the ClusPro 
docking tools. Such automated servers have proven to be very valuable to users. For example, 
the protein-protein docking server ClusPro [15] has over 5,000 new jobs submitted each month. 
Here we describe the steps performed by the server and its validation on the D3R Grand 
Challenge 4 BACE data set and the frequently used docking benchmark known as the Astex 
non-native set [16].

Methods

Overall workflow
The input data provided by the user consists of the receptor structure (as a PDB file) and the 
ligand chemical structure (as a SMILES string). A similarity search is performed in the Protein 
Data Bank (PDB) database to find templates — highly-homologous protein chains with similar 
ligands. An ensemble of initial conformations is generated for the ligand. For each of the 
templates found, the next steps are carried out independently. The target protein structure is re-
modeled (unless the user opts-out of this functionality) after the protein in the template, and the 
closest conformation of the ligand is added to the structure. The resulting protein-ligand 
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structures are subjected to restrained all-atom energy minimization (RM) to remove possible 
clashes and “relax” the ligand. The poses are ranked based on their similarity to the template.
Users can supply a list of PDB codes to exclude from the template search. The pipeline is 
shown in Fig. 1, and a more detailed description of each stage follows.

Fig. 1. The general overview of the pipeline of the LigTBM server. The steps between the initial 
template search and the final scoring are performed independently for each template found, 
indicated by ellipses.

Template search

The protocol starts with a search for known structures of closely related complexes. We use 
BLAST+ [17] to search for the sequence-similar (e-value = 10-20, sequence identity ≥ 30%) 
chain structures in the Protein Data Bank (PDB). For each ligand in the found 
structures, we calculate two versions of Maximum Common Substructure (“weak” 
and “strict” MCS) and Tanimoto score based on Daylight molecular fingerprint [18] 
as implemented in RDKit [19]. “Weak” version of MCS requires a match of atoms, 
valences, and bond types (with the only exception that single bond can match 
aromatic bond); “strict” version has an additional requirement that only complete 



rings can be a part of the MCS. The ligands with Tanimoto score ≥ 0.4 and “weak” 
MCS coverage ≥ 50% located within 8 Å of the selected chain are retained, thus 
forming protein-ligand template structures. The templates are ranked based on the 

score , where cw is the “weak” MCS coverage, i is the protein sequence identity, and 0.5 and 

0.3 correspond to the chosen thresholds of 50% and 30%, respectively. Up to 20 templates with 
the highest score are retained and used for refinement.

Preparation of starting poses

Despite the advancements of refinement protocols, having a good starting pose is still a 
prerequisite for constructing a low-RMSD model. LigTBM uses the ETKDG method [20] from 
RDKit [19] to generate 1,000 conformers for the target ligand. For each template, we align all 
conformers to the template’s “weak” MCS and retain only one conformer with the lowest MCS 
RMSD. Ligand atom partial charges are assigned using the AM1-BCC method [21] implemented 
in the antechamber module of the Amber software package [22]. For protonation, a pH of 7.4 is 
assumed. The user-submitted receptor structure is re-modeled by MODELLER [23] using the 
protein chain from the template structure. This step allows for “fine-tuning” of the (likely 
unbound) receptor structure submitted by the user to the ligand-bound template. The user has 
the option to skip re-modeling and use their uploaded structure without change. The resulting 
receptor and ligand structures are used as the starting poses for the refinement.

Refinement

We employ a basic restrained minimization protocol to refine the generated poses. The protocol 
is based on all-atom energy minimization using a CHARMM-based energy function with a 
GBSA-type solvation term (Analytical Continuum Electrostatics, ACE) [24]. During the 
minimization, all receptor atoms except hydrogens are fixed, while ligand atoms matching the 
template are restrained with a harmonic potential to the positions of the corresponding template 
atoms. Besides restraining the MCS, soft Gaussian potential wells are created, centered on 
each template atom. This gently pulls non-matching parts of the target ligand to the template if 
they are in the vicinity. Applying these restraints allows us to overcome the limitations of the 
general forcefield, and implicitly harness the details of interactions in the template X-ray 
structure. Minimization is performed with the L-BFGS algorithm [25], using an in-house libmol2 
library (https://bitbucket.org/bu-structure/libmol2/src/master/).

Scoring and ranking

For each target, the results from all templates are ranked in three steps, first based on the 
ligand “weak” MCS coverage, second on the “strict” MCS coverage, and third on the receptor 
sequence identity. This reflects our experience in D3R challenges, where ligand having a close 
match to the template was essential for obtaining low-RMSD results.The ligand MCS coverage 
(“weak” and “strict”) indicate what fraction of the target ligand is covered by the template, and 
thus higher values indicate that larger part of the target ligand agrees with the known binder, 
and smaller part of the ligand has to be modeled “ab initio,” without a template. The receptor 
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sequence identity, while serving as a tie-breaker for cases where the same or similar template 
ligands are bound to different receptors, is not generally indicative of the goodness of fit, since 
proteins as distant as having 30% sequence identity can have similar fold and function [26].
Additionally, for each model produced, a confidence score is computed based on the Tanimoto 
fingerprint similarity. As mentioned, MCS coverage measures the fraction of the target ligand 
“covered” by the template, and thus indicates the uncertainty in the placement of the ligand. In 
contrast, Tanimoto (intersection-over-union) fingerprint similarity also reflects if the template is 
larger than the target ligand. This symmetric similarity is not required for a good fit of the target 
ligand to the template, but it is indicative of the closeness of the modeled interaction to the 
known one, and therefore it is chosen to reflect model confidence. The models with Tanimoto 
similarity of 90% and above are assigned “high” confidence; between 65% and 90% “medium” 
confidence; between 40% and 65% “low” confidence; and the templates with Tanimoto 
fingerprint similarity below 40% are rejected at the template search stage.

Results and discussion

Validation methodology

The LigTBM server was tested on the D3R Grand Challenge 4 BACE dataset [12] and on the 
Astex Non-Native Set [16,27]. For each docking case, the PDB database was searched for all 
ligands bound to proteins with 30% or greater sequence similarity, and all PDB IDs, where a 
ligand was equivalent to the docking target, were added to an exclusion list prior to submitting to 
LigTBM. Equivalency was determined by comparing the target ligand SMILES to the PDB ligand 
SMILES using RDKit [19] (Morgan Fingerprint Tanimoto Similarity) and Pybel [28] (FP2 
Similarity). The list of all PDB IDs excluded for each run can be found in Table S2. RMSD of the 
produced models, relative to the known protein-small molecule complex, was calculated using 
DockRMSD [29]. The D3R Grand Challenge 4 BACE targets were run with the starting structure 
from PDB ID 5YGX [30], and LigTBM models were globally aligned using the PyMOL align 
function [31] to the native protein-ligand complexes provided by the D3R competition 
organizers. In the Astex Non-Native Set, the non-native receptor structures were locally aligned 
to the corresponding native structure around the ligand-binding site [32]. The structure with the 
lowest local RMSD to the native complex was selected as a starting receptor structure for the 
LigTBM benchmark. The performance was evaluated in terms of ligand RMSD (heavy-atoms 
only) after the receptor was aligned to the reference X-Ray structure.

Datasets

We used two different benchmark sets to evaluate the performance of the protocol:
“BACE” denotes the set of 20 Beta-Secretase 1 (BACE 1) inhibitors used as targets in the most 
recent round of the Drug Design Data Resource (D3R) blind prediction competition, Grand 
Challenge 4. The list of targets and their features are given in Table S1. The docking algorithm 
of the ClusPro LigTBM server is inspired by the semi-manual protocol our group successfully 
employed during this challenge [12]. The set consists of 20 compounds of the same class, of 



which 19 contain macrocycles. At the time of this writing crystal structures of these complexes 
were not deposited to the PDB, therefore no complexes were excluded from template search. 
This dataset served to verify that the automated version of the protocol is comparable in quality 
to the original one and to estimate its performance on such a difficult type of compounds as 
macrocycles.
“ANNS” denotes the Astex Non-Native Set, containing 65 cases [16,27]. The structures of the 
bound complexes were excluded from the template search (see Table S2 for the full list). This 
dataset is used to test the real-use scenario of docking to unbound receptor structures for a 
wide range of complexes.

Server performance

The performance of the server on the chosen benchmarks is reported in Table 1. The first row 
shows the total number of targets in a given benchmark. The “Template found” row shows the 
number of targets for which at least one suitable template was found. If no templates were 
found for a target, no result was produced. The “Top-1 < 2Å” row shows the number of targets 
for which the model selected as top 1 had RMSD below 2 Ångström. The “Top-5 < 2Å” row 
shows the number of targets for which any of the top-5 models had RMSD below 2 Å. Detailed 
per-target results, including RMSD for top-5 models, are given in Tables S1 and S2.

Table 1. Summary of the server performance on selected benchmarks

BACE ANNS

Total # of targets 20 65

Templates found 20 (100%) 59 (91%)

Top-1 <2Å 17 (85%) 44 (68%)

Top-5 <2Å 19 (95%) 47 (72%)

The results show that for the BACE set, which served as the inspiration for this protocol, 19 out 
of 20 cases have a top-1 structure under 2 Å, consistent with the performance of the original 
semi-manual approach used in D3R GC4 [12]. In the ANNS set, no suitable template was found 
for 6 out of 65 cases (9%). Among the rest, 44 cases had a top-1 model in the sub-2Å range. 
This performance (68% of the total number of cases) is on par with the performance of scoring 
functions in many popular docking programs [33]. However, LigTBM does not require the 
knowledge of binding pocket, and only requires starting structures of the receptor protein and 
the SMILES of the ligand. These results demonstrate that despite the inherent limitations of the 
template-based approach, LigTBM is capable of producing and correctly ranking near-native 
structures for a wide variety of compounds. The predicted confidence score is a good indicator 
of model reliability, as can be seen in Fig. 2. While some models with “low” confidence can still 
have low RMSD, the “medium” confidence models reliably have an RMSD score below 4 Å. 
“High” confidence models typically have sub-2Å RMSD.



Fig. 2. The boxplot of RMSD values for all produced models for the ANNS set. 

Web Server functionality

LigTBM has a simple user interface, which enables easy job submission and navigation. When 
directed to the website for the first time, the user will see the “Sign in” page, with options to 
either create an account (available for academic users only) or to use the server without an 
account. In the latter case, all submitted jobs will be publicly accessible. It is recommended to 
create an account if the data are considered confidential. Once logged in, the user is directed to 
the job submission page. Only three fields are mandatory for running the docking: “Protein”, 
“Chain ID,” and “Ligand SMILES”. If the user fills the field “PDB exclusions,” the listed PDB 
entries will be excluded from homology search, which can be useful for testing. If the “Do not 
remodel” field is unchecked, the provided protein structure will be remodeled, but in this case, 
the “MODELLER key” needs to be filled. The MODELLER license key is available from the 
MODELLER website (https://salilab.org/modeller/) and is free of charge for academic use. 
Alternatively, the “Do not remodel” field can be checked if the user does not wish to remodel the 
protein. Once the “Submit job” button is clicked, the job will be submitted to the queue on the 
computing cluster. If the input contains errors, the user will be asked to correct them. Some 
input errors (e.g., incorrect PDB file) will be detected prior to the submission, while others such 
as invalid MODELLER key or invalid SMILES string will result in failure after the job was 
submitted to the queue. 
The status of the submitted job can be tracked on the “Queue” and “Results” pages of the 
server. While the job is in progress, it is shown on the “Queue” page. The job details can be 
accessed by clicking the job ID. When the job is completed, it is shown on the “Results” page, 
where the program output can be downloaded. If the docking was successful, the models of the 
ligand bound to the protein will be available for download and can be inspected in the 3D viewer 
plugin on the same page. The scores for each model can be downloaded as a CSV file. If an 
error occurred during docking, the job will produce a log file explaining the nature of the error. If 
no template structure was found, the job will not produce any models, and the status will be 
changed to “No templates found.” In case of questions or suggestions, the users are 
encouraged to connect us through the email address specified on the “Contact” page.



Conclusion
Protein-ligand docking is a challenging yet practically important problem of molecular biology. 
Recently, the template-based approach has been among the top-performing methods both in 
protein-protein and protein-ligand community-wide blind prediction challenges, such as CAPRI 
[2,3,34,35] and D3R Grand Challenges. In this paper, we present an automated online server 
for template-based docking of small molecules to proteins. The fully-automated pipeline allows 
the users to run docking without the need for specialized hardware or software and is able to 
produce low-RMSD structures for a variety of compounds. Results demonstrate that the method 
is applicable to a wide range of protein-ligand systems, with 72% of the ANNS benchmark 
having a sub-2Å model in top-5 results. It is clear that the template-based method is only 
applicable if there exists a known structure for a similar receptor-ligand pair. However, we note 
that docking is most frequently used in the process of drug discovery against targets that are 
extensively studied, generally resulting in many X-ray structures co-crystallized with a variety of 
ligands. In fact, docking without any a priori information on the binding site is rare and tends to 
have a low success rate. The server features a user-friendly interface and is available for free 
non-commercial use at https://ligtbm.cluspro.org/. 

Acknowledgements
This work was supported by the National Institutes of Health grants R21 GM127952 and R35 
GM118078; the National Science Foundation grants AF 1816314, AF 1645512, and DBI 
1759277.

References

[1] A. Kryshtafovych, T. Schwede, M. Topf, K. Fidelis, J. Moult, Critical Assessment of 
Methods of Protein Structure Prediction (CASP) - Round XIII, Proteins. (2019). doi:10.1002/
prot.25823

[2] L.X. Peterson, W.-H. Shin, H. Kim, D. Kihara, Improved performance in CAPRI round 37 
using LZerD docking and template-based modeling with combined scoring functions, 
Proteins. 86 Suppl 1 (2018) 311–320. doi:10.1002/prot.25376

[3] P.J. Kundrotas, I. Anishchenko, V.D. Badal, M. Das, T. Dauzhenka, I.A. Vakser, Modeling 
CAPRI targets 110-120 by template-based and free docking using contact potential and 
combined scoring function, Proteins. 86 Suppl 1 (2018) 302–310. doi:10.1002/prot.25380

[4] M.F. Lensink, S. Velankar, M. Baek, L. Heo, C. Seok, S.J. Wodak, The challenge of 
modeling protein assemblies: the CASP12-CAPRI experiment, Proteins. 86 Suppl 1 (2018) 
257–273. doi:10.1002/prot.25419

[5] K.A. Porter, I. Desta, D. Kozakov, S. Vajda, What method to use for protein-protein 
docking?, Curr. Opin. Struct. Biol. 55 (2019) 1–7. doi:10.1016/j.sbi.2018.12.010

[6] M.N. Wass, L.A. Kelley, M.J.E. Sternberg, 3DLigandSite: predicting ligand-binding sites 
using similar structures, Nucleic Acids Res. 38 (2010) W469–73. doi:10.1093/nar/gkq406

[7] A. Roy, Y. Zhang, Recognizing protein-ligand binding sites by global structural alignment 
and local geometry refinement, Structure. 20 (2012) 987–997. 
doi:10.1016/j.str.2012.03.009

https://doi.org/10.1002/prot.25823
https://doi.org/10.1002/prot.25823
https://doi.org/10.1016/j.str.2012.03.009
https://doi.org/10.1093/nar/gkq406
https://doi.org/10.1016/j.sbi.2018.12.010
https://doi.org/10.1002/prot.25419
https://doi.org/10.1002/prot.25380
https://doi.org/10.1002/prot.25376
https://ligtbm.cluspro.org/


[8] H. Hwang, F. Dey, D. Petrey, B. Honig, Structure-based prediction of ligand-protein 
interactions on a genome-wide scale, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 13685–
13690. doi:10.1073/pnas.1705381114

[9] M. Brylinski, J. Skolnick, FINDSITE: a threading-based approach to ligand homology 
modeling, PLoS Comput. Biol. 5 (2009) e1000405. doi:10.1371/journal.pcbi.1000405

[10] J.-L. Pons, G. Labesse, @TOME-2: a new pipeline for comparative modeling of protein-
ligand complexes, Nucleic Acids Res. 37 (2009) W485–91. doi:10.1093/nar/gkp368

[11] H. Zhou, J. Skolnick, FINDSITE(comb): a threading/structure-based, proteomic-scale virtual 
ligand screening approach, J. Chem. Inf. Model. 53 (2013) 230–240. 
doi:10.1021/ci300510n

[12] S. Kotelnikov, A. Alekseenko, C. Liu, M. Ignatov, D. Padhorny, E. Brini, M. Lukin, E. 
Coutsias, K.A. Dill, D. Kozakov, Sampling and refinement protocols for template-based 
macrocycle docking: 2018 D3R Grand Challenge 4, Journal of Computer-Aided Molecular 
Design 24 (2020) 179–189. doi:10.1007/s10822-019-00257-1

[13] D.D. Nguyen, K. Gao, M. Wang, G.-W. Wei, MathDL: Mathematical deep learning for D3R 
Grand Challenge 4, arXiv [q-bio.QM]. (2019). https://arxiv.org/abs/1909.07784 

[14] P.C.-H. Lam, R. Abagyan, M. Totrov, Macrocycle modeling in ICM: benchmarking and 
evaluation in D3R Grand Challenge 4, J. Comput. Aided Mol. Des. (2019). 
doi:10.1007/s10822-019-00225-9

[15] D. Kozakov, D.R. Hall, B. Xia, K.A. Porter, D. Padhorny, C. Yueh, D. Beglov, S. Vajda, The 
ClusPro web server for protein-protein docking, Nat. Protoc. 12 (2017) 255–278. 
doi:10.1038/nprot.2016.169

[16] M.L. Verdonk, P.N. Mortenson, R.J. Hall, M.J. Hartshorn, C.W. Murray, Protein-ligand 
docking against non-native protein conformers, J. Chem. Inf. Model. 48 (2008) 2214–2225. 
doi:10.1021/ci8002254

[17] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T.L. Madden, 
BLAST+: architecture and applications, BMC Bioinformatics. 10 (2009) 421. 
doi:10.1186/1471-2105-10-421

[18] Daylight Chemical Information Systems, DAYLIGHT Software Manual, (2011). 
https://www.daylight.com/dayhtml/doc/theory/index.html

[19] G. Landrum, RDKit: Open-source cheminformatics https://rdkit.org/, 2019. https://rdkit.org/.
[20] S. Riniker, G.A. Landrum, Better Informed Distance Geometry: Using What We Know To 

Improve Conformation Generation, J. Chem. Inf. Model. 55 (2015) 2562–2574. doi:10.1021/
acs.jcim.5b00654

[21] A. Jakalian, B.L. Bush, D.B. Jack, C.I. Bayly, Fast, efficient generation of high quality ‐quality 
atomic charges. AM1 BCC model: I. Method, J. Comput. Chem. 21 (2000) 132–146.‐quality 

[22] D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham III, V.W.D. Cruzeiro, 
T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R. 
Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. 
Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. 
Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. 
Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith, R. Salomon-Ferrer, J. 
Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao, D.M. York, P.A. Kollman, 
AMBER 2018, (2018). http://ambermd.org/.

[23] B. Webb, A. Sali, Comparative Protein Structure Modeling Using MODELLER, Curr. Protoc. 
Bioinformatics. 54 (2016) 5.6.1–5.6.37. doi:10.1002/cpbi.3.

[24] M. Moghadasi, H. Mirzaei, A. Mamonov, P. Vakili, S. Vajda, I.C. Paschalidis, D. Kozakov, 
The impact of side-chain packing on protein docking refinement, J. Chem. Inf. Model. 55 
(2015) 872–881. doi:10.1021/ci500380a

[25] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, 
Math. Program. 45 (1989) 503–528. doi:10.1007/BF01589116

https://doi.org/10.1002/cpbi.3
https://doi.org/10.1007/BF01589116
https://doi.org/10.1021/ci500380a
http://ambermd.org/
https://doi.org/10.1021/acs.jcim.5b00654
https://doi.org/10.1021/acs.jcim.5b00654
https://rdkit.org/
https://rdkit.org/
https://www.daylight.com/dayhtml/doc/theory/index.html
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1021/ci8002254
https://doi.org/10.1038/nprot.2016.169
https://doi.org/10.1007/s10822-019-00225-9
http://arxiv.org/abs/1909.07784
https://doi.org/10.1007/s10822-019-00257-1
https://doi.org/10.1021/ci300510n
https://doi.org/10.1371/journal.pcbi.1000405
https://doi.org/10.1371/journal.pcbi.1000405
https://doi.org/10.1073/pnas.1705381114


[26] R. Sánchez, A. Sali, Large-scale protein structure modeling of the Saccharomyces 
cerevisiae genome, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 13597–13602. 
doi:10.1073/pnas.95.23.13597

[27] M.J. Hartshorn, M.L. Verdonk, G. Chessari, S.C. Brewerton, W.T.M. Mooij, P.N. Mortenson, 
C.W. Murray, Diverse, high-quality test set for the validation of protein-ligand docking 
performance, J. Med. Chem. 50 (2007) 726–741. doi:10.1021/jm061277y

[28] N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open 
Babel: An open chemical toolbox, J. Cheminform. 3 (2011) 33. doi:10.1186/1758-2946-3-33

[29] E.W. Bell, Y. Zhang, DockRMSD: an open-source tool for atom mapping and RMSD 
calculation of symmetric molecules through graph isomorphism, J. Cheminform. 11 (2019) 
40. doi:10.1186/s13321-019-0362-7

[30] K. Nakahara, K. Fuchino, K. Komano, N. Asada, G. Tadano, T. Hasegawa, T. Yamamoto, 
Y. Sako, M. Ogawa, C. Unemura, M. Hosono, H. Ito, G. Sakaguchi, S. Ando, S. Ohnishi, Y. 
Kido, T. Fukushima, D. Dhuyvetter, H. Borghys, H.J.M. Gijsen, Y. Yamano, Y. Iso, K.-I. 
Kusakabe, Discovery of Potent and Centrally Active 6-Substituted 5-Fluoro-1,3-dihydro-
oxazine β-Secretase (BACE1) Inhibitors via Active Conformation Stabilization, J. Med. 
Chem. 61 (2018) 5525–5546. doi:10.1021/acs.jmedchem.8b00011

[31] Schrödinger, LLC, The PyMOL Molecular Graphics System, Version 2.0, (2019). 
https://pymol.org/2/.

[32] D. Beglov, D.R. Hall, A.E. Wakefield, L. Luo, K.N. Allen, D. Kozakov, A. Whitty, S. Vajda, 
Exploring the structural origins of cryptic sites on proteins, Proc. Natl. Acad. Sci. U. S. A. 
115 (2018) E3416–E3425. doi:10.1073/pnas.1711490115

[33] M.L. Verdonk, R.F. Ludlow, I. Giangreco, P.C. Rathi, Protein-Ligand Informatics Force Field 
(PLIff): Toward a Fully Knowledge Driven “Force Field” for Biomolecular Interactions, J. 
Med. Chem. 59 (2016) 6891–6902. doi:10.1021/acs.jmedchem.6b00716

[34] M.F. Lensink, S. Velankar, A. Kryshtafovych, S.-Y. Huang, D. Schneidman-Duhovny, A. 
Sali, J. Segura, N. Fernandez-Fuentes, S. Viswanath, R. Elber, S. Grudinin, P. Popov, E. 
Neveu, H. Lee, M. Baek, S. Park, L. Heo, G. Rie Lee, C. Seok, S. Qin, H.-X. Zhou, D.W. 
Ritchie, B. Maigret, M.-D. Devignes, A. Ghoorah, M. Torchala, R.A.G. Chaleil, P.A. Bates, 
E. Ben-Zeev, M. Eisenstein, S.S. Negi, Z. Weng, T. Vreven, B.G. Pierce, T.M. Borrman, J. 
Yu, F. Ochsenbein, R. Guerois, A. Vangone, J.P.G.L.M. Rodrigues, G. van Zundert, M. 
Nellen, L. Xue, E. Karaca, A.S.J. Melquiond, K. Visscher, P.L. Kastritis, A.M.J.J. Bonvin, X. 
Xu, L. Qiu, C. Yan, J. Li, Z. Ma, J. Cheng, X. Zou, Y. Shen, L.X. Peterson, H.-R. Kim, A. 
Roy, X. Han, J. Esquivel-Rodriguez, D. Kihara, X. Yu, N.J. Bruce, J.C. Fuller, R.C. Wade, I. 
Anishchenko, P.J. Kundrotas, I.A. Vakser, K. Imai, K. Yamada, T. Oda, T. Nakamura, K. 
Tomii, C. Pallara, M. Romero-Durana, B. Jiménez-García, I.H. Moal, J. Férnandez-Recio, 
J.Y. Joung, J.Y. Kim, K. Joo, J. Lee, D. Kozakov, S. Vajda, S. Mottarella, D.R. Hall, D. 
Beglov, A. Mamonov, B. Xia, T. Bohnuud, C.A. Del Carpio, E. Ichiishi, N. Marze, D. Kuroda, 
S.S. Roy Burman, J.J. Gray, E. Chermak, L. Cavallo, R. Oliva, A. Tovchigrechko, S.J. 
Wodak, Prediction of homoprotein and heteroprotein complexes by protein docking and 
template-based modeling: A CASP-CAPRI experiment, Proteins. 84 Suppl 1 (2016) 323–
348. doi:10.1002/prot.25007

[35] M.F. Lensink, S. Velankar, S.J. Wodak, Modeling protein-protein and protein-peptide 
complexes: CAPRI 6th edition, Proteins. 85 (2017) 359–377. doi:10.1002/prot.25215

https://doi.org/10.1002/prot.25215
https://doi.org/10.1002/prot.25007
https://doi.org/10.1021/acs.jmedchem.6b00716
https://doi.org/10.1073/pnas.1711490115
https://pymol.org/2/
https://doi.org/10.1021/acs.jmedchem.8b00011
https://doi.org/10.1186/s13321-019-0362-7
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1021/jm061277y
https://doi.org/10.1073/pnas.95.23.13597

